ANTIOXIDANT ACTIVITY AND TOTAL FLAVONOIDS CONTENT OF CURCUMA RHIZOME EXTRACT

Ikna Suyatna Jalip¹, Suprihatin²,³, Ida Wiryanti¹,³, Ernawati Sinaga¹,³

¹Faculty of Biology, Universitas Nasional, Jakarta, Indonesia;
²Faculty of Health Sciences, Universitas Nasional, Jakarta, Indonesia;
³Center for Research and Development of Medicinal Plants, Universitas Nasional, Jakarta, Indonesia;
Email: warekppm@unas.ac.id

ABSTRACT

The family of Zingiberaceae, including the genus Curcuma, has been used since hundreds of years ago as ingredient of traditional medicines. Various scientific studies to support its use as traditional medicine was already done. One of the most prominent biological activity possessed by the family of Zingiberaceae was the antioxidant activity. The aim of this research was to examined the antioxidant activity and flavonoid content of rhizome’s extract of Curcuma heyneana, Curcuma mangga, Curcuma aeruginosa, Curcuma phaeocaulis and Curcuma purpurascens. The antioxidant activity was determined by DPPH method and total flavonoid content was determined by colorimetric method. The antioxidant activity of Curcuma rhizome’s extract in this study ranged from very strong to weak. C. purpurascens had a very strong antioxidant activity (EC₅₀ value of 36.30 ppm) and also the highest flavonoids content measured as quercetin (14.27%). Based on correlation analysis (R² = 0.6573), there is a positive correlation between total flavonoid content with antioxidant activity of the extract.

Keywords
Antioxidant, flavonoid, Curcuma, rhizome.
INTRODUCTION

Plants of Zingiberaceae family has been used since hundreds of years ago as source of traditional medicines, including plants belong to the genus Curcuma. Various scientific studies has been done to support its use as traditional remedies. One of the most prominent biological activity of plants belong to Zingiberaceae family is the antioxidant activity (Vankar et al, 2006; Chompo et al, 2012; Kantayos and Paisooksantivatana, 2012; Sattar et al, 2013).

Antioxidants are compounds capable to either delay or inhibit the oxidation processes which occur under the influence of atmospheric oxygen or reactive oxygen species. Antioxidants are involved in the defense mechanism of the organism against pathologies associated to the attack of free radicals. (Pisoschi and Negulescu, 2011). Free radicals can be defined as any molecular species capable of independent existence that contains an unpaired electron in an atomic orbital, make them very reactive and capable of reacting with important biomolecules, such as proteins, lipids, and DNA. Free radicals damage contributes to the etiology of many chronic health problems such as cardiovascular and inflammatory disease, cataract, and cancer (Lobo et al, 2010).

Recently, antioxidants have attracted considerable attention in relation to free radicals and oxidative stress, cancer prophylaxis and therapy, cardiovascular diseases and other degenerative diseases. Antioxidants prevent free radical induced tissue damage by preventing the formation of radicals, scavenging them, or by promoting their decomposition (Lobo et al, 2010). In addition to endogenous antioxidant defense systems which naturally present in human body, endogenous antioxidant is necessary to improve the body's resistance against degenerative diseases.

Endogenous antioxidant can be either synthetic or natural. Synthetic antioxidants are recently reported to be dangerous to human health. Thus the search for effective, nontoxic natural compounds with antioxidative activity has been intensified in recent years. Dietary and medicinal plants are major source of natural antioxidants.

Many researches has revealed the antioxidant activity of dietary and medicinal plants, including the plants belong to Zingiberaceae family. Antioxidant activities of rhizomes of Alpinia allughas, A. galanga, A. smithiae, A. vittata, Hedychium coronarium, Vanoverberghia sasakiana, Zingiber cassumunar, Z. chrysanthum, Z. officinale, and Z. zerumbet had been reported (Vankar et al, 2006; Chen et al, 2008; Pal et al, 2011; Rout et al, 2011; Julie and Ernest, 2012; Sattar et al, 2013). Anget et al (2013) reported the antioxidant activity of heat stable protein isolated from aqueous extracts of rhizomes of Curcuma aeruginosa, C.amada, C. aromatica, C. brog, C. caesia, C. malabarica, C. rakthakanta and C. sylvatica. Protein extracted from C.brog, C.amada, and C.caesia had low IC_{50} values of 0.70, 0.73, 0.80 respectively, showing high DPPH scavenging activity which were comparable with that of C. zedoaria (IC_{50} 0.84). Antioxidant activity of ethanolic extract of Curcuma longa, C. zedoaria, C. angustifolia, C. aromatica, and C. amada had also been reported. Antioxidant activity of those species except C.angustifolia had been found to have strong correlation with curcumin and phenol content. However C.angustifolia may be active due to high aromatic oil content like eugenol, palmitic acid and camphor (Nahak and Sahu, 2011). Curcuma longa or turmeric is a famous medicinal plants, and it has strong
antioxidant activity especially in its essential oil (Liju et al., 2011).

In attempt to search more source for natural antioxidant, in this work we evaluated the antioxidant activity of rhizomes of five species of Curcuma, i.e. Curcuma heynaeana, C. mangga, C. aeruginosa, C. phaeocaulis and C. purpurascens. Since antioxidant activity of plant’s extracts often related to its flavonoids content (Grassi et al., 2010; Brunetti et al., 2013), in this work we also determined the total flavonoids content of the extracts, and evaluated the correlation between antioxidant activity and flavonoids content of the extracts.

MATERIALS AND METHODS

Preparation of crude rhizome extract

Rhizomes of Curcuma heynaeana, C. mangga, C. aeruginosa, C. phaeocaulis and C. purpurascens were obtained from BALITTRO (Balai Penelitian Tanaman Rempah dan Obat), Bogor, West Java.

The dried rhizomes were powdered using a grinder and extraction was done at room temperature. About 100 g of dried powder of the rhizomes were soaked in methanol (1 L, 98%) for 2-3 days, and then filtered through Whatman filter paper No.1. The filtrates obtained were concentrated under vaccum on a rotary evaporator at 50°C and stored at 4°C for further use. The stock solution of crude extract (5 mg/mL) was prepared by dissolving a known amount of dry extract in 98% methanol. The working solution (75, 100, 250, 500 and 750 ppm) of extracts were prepared from stock solution by suitable dilution.

DPPH Radical Scavenging Activity Assay

The antioxidant activity of the rhizome extract was assessed on the basis of the radical scavenging effect of the stable 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical activity as described recently (Pal et al., 2011; Chompo et al., 2012). Working solutions of the extract were prepared in methanol. Ascorbic acid was used as standard in 1-100 ppm solution. 0.002 % of DPPH was prepared in methanol and 1 mL of this solution was mix with 1 mL of sample solution and standard solution separately. These solution mixtures were kept in dark for 30 minutes and optical density (OD) or absorbance (A) was measured at 517 nm using UV-Vis Spectrophotometer. Methanol (1 mL) with DPPH solution (0.002%, 1 mL) was used as blank. The optical density was recorded and % inhibition was calculated using the formula given below:

\[
\text{% inhibition} = \frac{Ab - As}{Ab} \times 100
\]

where: Ab = Absorbance of blank
As = Absorbance of sample

Linear regression analysis (Origin 6.0 version) was used to calculate the IC\textsubscript{50} values.

Determination of total flavonoid

The total flavonoid content was measured by aluminium chloride colorimetric assay as described recently (Hossain et al., 2011). An aliquot (1 mL) of extracts or standard solution of quercetin (20, 40, 60, 80 and 100 ppm) was added to 10 mL volumetric flask, containing 4 mL distilled deionized water (dd H\textsubscript{2}O). To the flask was added 0.3 mL 5% NaNO\textsubscript{3}. After 5 minutes, 0.3 mL 10% AlCl\textsubscript{3} was added, and after 6 minutes more, 2 mL 1 M NaOH was added and the total volume was made up to 10 mL with dd H\textsubscript{2}O. The solution was mixed well and the absorbance was measured against a prepared reagent blank at 510 nm with an UV-Vis Spectrophotometer. The measurement was carried out in triplicate and the results were averaged. The data of the total flavonoid
contents of the dry rhizome extracts were expressed as % of quercetin, calculated using the formula given below:

\[
\% \text{ Flavonoids (as quercetin)} = \frac{A_q \times W}{A_s}
\]

where: \(A_s\) = Absorbance of sample
\(A_q\) = Absorbance of quercetin
\(W\) = sample weight

RESULTS

Yield of Extraction

Yield of extraction was expressed as weight (g) of crude extract per 100 gram of powdered-dried plant material. The yield of crude extract from Curcuma rhizomes by using methanol as solvent varied between 7.08% - 11.52%. As shown in Table 1, the highest yield generated from \(C.\) purpurascens and the lowest is from \(C.\) mangga.

Total Flavonoid Content

Total flavonoids content of five methanolic extract of Curcuma rhizomes measured as quercetin are presented in Table 2. The value ranged from 1.35 to 14.27%. The highest was \(C.\) purpurascens rhizome’s extract, while the lowest was \(C.\) aeruginosa.

Antioxidant Activity

Antioxidant activity of rhizomes of five Curcuma species determined using DPPH method are varied, the \(EC_{50}\) values ranged from 36.30 to 199.71 ppm (Table 3). \(EC_{50}\) value is concentration of sample required to scavenge 50% of DPPH radicals. The lowest \(EC_{50}\) value, means the strongest antioxidant activity, was belong to rhizome’s extract of \(C.\) purpurascens (36.30 ppm), while the highest value belong to rhizome’s extract of \(C.\) heyneana (155.68 ppm).

DISCUSSION

In this work we used methanol as solvent for extraction of bioactive substances from the rhizomes. Methanol is a popular solvent for extraction of bioactive substances from plant material, due to its quite small molecular structure, so it can penetrate all plant tissues to pull out the active ingredient. Methanol also has the ability to dissolve almost all organic compounds, both polar and non-polar compounds. Another advantage of methanol is

<table>
<thead>
<tr>
<th>Species</th>
<th>Local Name</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C.) heyneana</td>
<td>Temu giring</td>
<td>11.10</td>
</tr>
<tr>
<td>(C.) mangga</td>
<td>Temu mangga</td>
<td>7.08</td>
</tr>
<tr>
<td>(C.) aeruginosa</td>
<td>Temu ireng</td>
<td>7.26</td>
</tr>
<tr>
<td>(C.) phaeocaulis</td>
<td>Temu jingga</td>
<td>10.78</td>
</tr>
<tr>
<td>(C.) purpurascens</td>
<td>Temu pinggang</td>
<td>11.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Total Flavonoids (as quercetin) (%)</th>
<th>1</th>
<th>2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C.) heyneana</td>
<td>1.94 1.98 1.96</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Antioxidant Activity ((EC_{50}) (ppm))</th>
<th>1</th>
<th>2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C.) heyneana</td>
<td>153.16 158.20 155.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C.) mangga</td>
<td>89.47 91.36 90.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C.) aeruginosa</td>
<td>199.57 199.85 199.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C.) phaeocaulis</td>
<td>112.96 108.88 110.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C.) purpurascens</td>
<td>36.34 36.26 36.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
that it is volatile so it easily separated from the extract. The disadvantage of methanol as solvent for extraction is due to its ability to dissolve wide range polarity of substances, so it is not selective. Yield of extraction with methanol usually higher compare to other solvent, such as ethanol, acetone, chloroform, and ethyl acetate. Extraction of Ginger (Zingiber officinale) with methanol give highest yield compare to acetone and chloroform (Ghasemzadeh et al., 2011). Similarly, the methanolic extract of A. wilkesiana and S. scrabrum gave the highest yield (14.67% and 17.23%, respectively), while the ethylacetate extract gave the least yield (2.73% and 4.13% respectively) (Anokwuru et al., 2011).

Flavonoids are plant’s secondary metabolites with variable phenolic structures. More than 4000 varieties of flavonoids have been identified, most of them posses important bioactivity, such as antioxidant and anticancer activity. One of the best-described flavonoids is quercetin. Quercetin is found in abundance in onions, apples, broccoli, and berries. In Curcuma species, the most well known flavonoid is curcumin, the principal curcuminoid of turmeric (Curcuma longa). The main flavonoid content in Curcuma plants studied in this work is still unknown.

Methanolic extract of Curcuma purpurascens rhizomes had the highest total flavonoids content (measured as quercetin) among the species investigated in this work, very much higher (14.27%) than the others (1.35-5.21%). This is in line with the antioxidant activity of the extracts, as shown ini Table 3. Methanolic extract of Curcuma purpurascens rhizomes showed the lowest EC50 values (antioxidant activity), i.e. 36.30 ppm, means the highest antioxidant activity, while the other four species ranged from 90.42 to 199.71 ppm (Table 3). According to Zuhra et al. (2008), a substance is said to have very strong antioxidant activity if the EC50 is less than 50 ppm, strong if EC50 ranged from 50 to 100 ppm, moderate if EC50 ranged from 100 to 150 ppm, and weak if EC50 ranged from 151 to 200 ppm. According to the criteria, C. purpurascens could be stated as having very strong antioxidant activity, followed by C.mangga (strong), C. phaeocaulis and C.heyneana (moderate) and C.aeruginosa (weak).

DPPH radical scavenging activity assay based on scavenging of DPPH through the addition of an antioxidant that decolourizes the DPPH solution. The degree of colour change is proportional to the concentration and potency of the antioxidants. A large decrease in the absorbance of the reaction mixture indicates significant free radical scavenging activity of the compound under test (Krishnaiah et al, 2011). However, to obtain a better and closer approach to its expected use, as a natural antioxidant for human use, it is necessary to conduct in vivo antioxidant assay especially for the potential one.

From five Curcuma species studied in this work, the best performance, in terms of antioxidant activity and flavonoids content was Curcuma purpurascens. Therefore, this species could be developed further as a potential source of natural antioxidant for human use.

Based on correlation analysis (R² = 0.6573), we revealed a positive correlation between total flavonoid content with antioxidant activity of the extract, suggested that the antioxidant activity of the extract might be due, at least partly, to the presence of flavonoids. This results in line with other works previously reported (Nahak and Sahu, 2011; Khan, 2012;Gopal, et al, 2013).

CONCLUSION
Antioxidant activity of methanolic extract of five Curcuma species; i.e. *C. heynnea*, *C. mangga*, *C. aeruginosa*, *C. phaeocaulis* and *C. purpurascens* varied from very strong to weak with EC₅₀ values varied from 36.30 to 199.71 ppm. *C. purpurascens* had the strongest antioxidant activity in line with its highest flavonoid content (14.27%). The antioxidant activity of the extract significantly correlated with the total flavonoid content.

ACKNOWLEDGMENT

The authors would like to thank Universitas Nasional for financial support and BALITTRO (Balai Penelitian Tanaman Rempah dan Obat) for providing the samples.

REFERENCES

